16 research outputs found

    A Methodology for daylight optimisation of high-rise buildings in the dense urban district using overhang length and glazing type variables with surrogate modelling

    Get PDF
    Urbanization and population growth lead to the construction of higher buildings in the 21st century. This causes an increment on energy consumption as the amount of constructed floor areas is rising steadily. Integrating daylight performance in building design supports reducing the energy consumption and satisfying occupants' comfort. This study presents a methodology to optimise the daylight performance of a high-rise building located in a dense urban district. The purpose is to deal with optimisation problems by dividing the high-rise building into five zones from the ground level to the sky level, to achieve better daylight performance. Therefore, the study covers five optimization problems. Overhang length and glazing type are considered to optimise spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). A total of 500 samples in each zone are collected to develop surrogate models. A self-adaptive differential evolution algorithm is used to obtain near-optimal results for each zone. The developed surrogate models can estimate the metrics with minimum 98.25% R2 which is calculated from neural network prediction and Diva simulations. In the case study, the proposed methodology improves daylight performance of the high-rise building, decreasing ASE by approx. 27.6% and increasing the sDA values by around 88.2% in the dense urban district. - Published under licence by IOP Publishing Ltd.We would like to thank Cemre Cubukcuoglu for the collaborative work while implementing the optimisation algorithm. M. Fatih Tasgetiren, who is partially supported by the National Natural Science Foundation of China (Grant No. 51435009), acknowledges the HUST project in Wuhan.Scopu

    A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

    Full text link
    The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs

    Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems

    Get PDF
    This paper presents the first investigation on applying a particle swarm optimization (PSO) algorithm to both the Steiner tree problem and the delay constrained multicast routing problem. Steiner tree problems, being the underlining models of many applications, have received significant research attention within the meta-heuristics community. The literature on the application of meta-heuristics to multicast routing problems is less extensive but includes several promising approaches. Many interesting research issues still remain to be investigated, for example, the inclusion of different constraints, such as delay bounds, when finding multicast trees with minimum cost. In this paper, we develop a novel PSO algorithm based on the jumping PSO (JPSO) algorithm recently developed by Moreno-Perez et al. (Proc. of the 7th Metaheuristics International Conference, 2007), and also propose two novel local search heuristics within our JPSO framework. A path replacement operator has been used in particle moves to improve the positions of the particle with regard to the structure of the tree. We test the performance of our JPSO algorithm, and the effect of the integrated local search heuristics by an extensive set of experiments on multicast routing benchmark problems and Steiner tree problems from the OR library. The experimental results show the superior performance of the proposed JPSO algorithm over a number of other state-of-the-art approaches

    A variable block insertion heuristic for permutation flowshops with makespan criterion

    No full text
    This paper proposes a populated variable block insertion heuristic (PVBIH) algorithm for solving the permutation flowshop scheduling problem with the makespan criterion. The PVBIH algorithm starts with a minimum block size being equal to one. It removes a block from the current solution and inserts it into the partial solution randomly with a predetermined move size. A local search is applied to the solution found after several block moves. If the new solution generated after the local search is better than the current solution, it replaces the current solution. It retains the same block size as long as it improves. Otherwise, the block size is incremented by one and a simulated annealing-type of acceptance criterion is used to accept the new solution. This process is repeated until the block size reaches at the maximum block size. In addition, we present a randomized profile fitting heuristic with excellent results. Extensive computational results on the Taillard's well-known benchmark suite show that the proposed PVBIH algorithm substantially outperforms the differential evolution algorithm (NS-SGDE) recently proposed in the literature. © 2017 IEEE

    Multi-zone simulation results on ASE and sDA daylight metrics for parametric high-rise model with quad grid and diagrid facade in a highly dense hypothetical urban district using dry summer climate weather data

    No full text
    The research focuses on optimizing different zones of high-rise buildings in dense urban districts to improve the overall performance. For this reason, a hypothetical dense urban district is generated in Grasshopper 3d Algorithmic Modeling Environment in Rhino 3D. The models include various design variables depending on the facades type (quad grid and diagrid) and zones. Annual Sunlight Exposure (ASE) and Spatial Daylight Autonomy (sDA) are used as performance metrics. Simulation results are collected with the Latin Hypercube Sampling method from Diva4Rhino, a plug-in for environmental analysis for buildings. 10 zones, having 6 floors each, are considered from ground level to the top level of the high-rise building model for each facade types. In each zone, 2 floors are used for the simulation. Results of each floor, as well as their average results, are given for both metrics. Detailed explanations regarding dependent and independent variables of each zone are given in different “ReadMe” files. The resulting data can be used in future metropolitan studies, for sensitivity analysis, surrogate modeling, and statistical analysis for high-rise buildings in highly dense urban plots located in dry summer climate regions
    corecore